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Abstract

We construct a differential algebra of forms on the kappa-deformed space. For
a given realization of noncommutative coordinates as formal power series in
the Weyl algebra we find an infinite family of one-forms and nilpotent exterior
derivatives. We derive explicit expressions for the exterior derivative and one-
forms in covariant and noncovariant realizations. We also introduce higher
order forms and show that the exterior derivative satisfies the graded Leibniz
rule. The differential forms are generally not graded commutative, but they
satisfy the graded Jacobi identity. We also consider the star-product of classical
differential forms. The star-product is well defined if the commutator between
the noncommutative coordinates and one-forms is closed in the space of one-
forms alone. In addition, we show that in certain realizations the exterior
derivative acting on the star-product satisfies the undeformed Leibniz rule.

PACS numbers: 02.20.Sv, 02.20.Uw, 02.40.Gh

1. Introduction

Recent years have witnessed a growing interest in the formulation of physical theories on
noncommutative (NC) spaces. The structure of NC spaces and their physical implications
was studied in [1–7]. Such spaces have roots in quantum mechanics where the canonical
phase space becomes noncommutative (see [8] for a historical treatment and references
therein). Classification of the NC spaces and investigation of their properties, in particular
the development of a general theory suitable for physical applications, is an important
problem. In this paper, we investigate differential calculus in the Euclidean kappa-deformed
space. The kappa-space is a mild deformation of the Euclidean space whose coordinates
x̂μ, μ = 1, 2, . . . , n, satisfy a Lie algebra type commutation relations. The commutation
relations for x̂μ depend on a deformation vector a ∈ R

n which is on a very small length
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scale and yields the undeformed space when a → 0. The kappa-space was studied by
different groups, from both the mathematical and physical points of view [9–33]. It provides
a framework for doubly special relativity [18, 19], and it has applications in quantum gravity
[34] and quantum field theory [35, 36].

A crucial tool in the development of a physical theory is differential calculus. There have
been several attempts to develop differential calculus in the kappa-deformed space [14, 25].
For a general associative algebra Landi gave a construction of a differential algebra of forms
in [37]. In this work, we present a construction of differential forms and exterior derivative
in the kappa-deformed space using realizations of the NC coordinates x̂μ as formal power
series in the Weyl algebra. Our approach is based on the methods developed for algebras of
deformed oscillators and the corresponding creation and annihilation operators [38–47]. The
realizations of the NC coordinates x̂μ in various orderings have been found in [26, 28]. The
realization of a general Lie algebra type NC space in the symmetric Weyl ordering has been
given in [48].

The outline of the paper is as follows. In section 2, we present a novel construction
of a differential algebra of forms on the kappa-deformed space. The exterior derivative d̂

and one-forms ξμ are defined as formal power series in the Lie superalgebra generated by
commutative coordinates xμ, derivatives ∂μ and ordinary one-forms dxμ. The number of
one-forms ξμ is the same as the number of NC coordinates x̂μ, and the results are valid for a
general deformation vector a ∈ R

n. In the present work, we do not require compatibility of
the differential structure with a kappa-deformed symmetry. This distinguishes our approach
from [14] where compatibility of the differential calculus with the kappa-deformed symmetry
group was considered. This compatibility requires that in addition to ξμ there is an extra
one-form φ. The realizations of d̂ and ξμ are related to realizations of x̂μ through a system of
partial differential equations. We also define higher order forms and show that d̂ is a nilpotent
operator which satisfies the graded Leibniz rule. However, the differential forms are generally
not graded commutative. In the smooth limit when a → 0 our theory reduces to classical
results. In section 3, we analyze the exterior derivative and one-forms in covariant realizations
of the kappa-deformed space. We show that the algebra generated by x̂μ and ξμ generally
does not close under the commutator bracket since [ξμ, x̂ν] may involve an infinite series in
derivatives ∂μ. We have derived a condition for the commutator [ξμ, x̂ν] to be closed and found
realizations in which the condition holds. A similar analysis was carried out by Dimitrijević
et al in [25], but our results are more general and in certain aspects different. Section 4 deals
with the differential algebra of forms in noncovariant realizations. We introduce a general
ansatz for the exterior derivative and find the corresponding one-forms in the left, right and
symmetric left–right realization. In these realizations the commutator [ξμ, x̂ν] is always closed
in the space of one-forms ξμ alone. In section 5, we present a novel construction of the star-
product of (classical) differential forms. The star-product depends on realizations of x̂μ and is
well defined if the commutator [ξμ, x̂ν] is closed in the space of one-forms ξμ alone. We show
that for differential forms with constant coefficients the star-product is undeformed and graded
commutative. However, this property does not hold for arbitrary forms. Also, we consider the
induced exterior derivative acting on the star-product of differential forms. A short conclusion
is given in section 6.

2. Differential forms

In this section, we present a general construction of a differential algebra of forms in the
Euclidean kappa-deformed space. This construction is based on realizations of the NC
coordinates x̂μ as formal power series in the Weyl algebra introduced in [26, 28]. We find that
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for a given realization of x̂μ there is an infinite family of exterior derivatives d̂ and one-forms
ξμ where ξμ are obtained by the action of d̂ on x̂μ. This infinite family includes two canonical
types of d̂ and ξμ whose realizations are studied in detail in the following sections.

The n-dimensional kappa-deformed space is a noncommutative space of Lie algebra type
with generators x̂1, x̂2, . . . , x̂n satisfying the commutation relations

[x̂μ, x̂ν] = i(aμx̂ν − aνx̂μ), aμ ∈ R. (1)

The vector a ∈ R
n describes the deformation of the n-dimensional Euclidean space. The Lie

algebra satisfying (1) will be denoted by g. The structure constants of g are given by

Cμνλ = aμδνλ − aνδμλ. (2)

Our construction of the differential calculus uses realizations of x̂μ as formal power series
in the deformation parameter a with coefficients in the Weyl algebra. The Weyl algebra is
generated by the operators xμ and ∂μ, μ = 1, 2, . . . , n, satisfying [xμ, xν] = [∂μ, ∂ν] = 0 and
[∂μ, xν] = δμν . It has been shown in [26, 28] that there exist infinitely many realizations of
x̂μ of the form

x̂μ =
∑

α

xαφαμ(∂), (3)

where φαμ is a formal power series

φαμ(∂) = δαμ +
∑
|k|�1

cka
|k|∂k. (4)

We denote ∂k = ∂
k1
1 ∂

k2
2 · · · ∂kn

n where k is a multi-index of length |k| = ∑
μ kμ. In the limit

as a → 0 we have φαμ → δαμ, whence x̂μ become the commutative coordinates xμ. A
representation (3) of the NC coordinates x̂μ will be called a φ-realization. The NC coordinates
x̂μ and derivatives ∂μ generate a deformed Heisenberg algebra satisfying

[∂μ, x̂ν] = φμν(∂). (5)

We will assume that the matrix [φμν] is invertible, allowing us to express xμ as

xμ =
∑

α

x̂αφ−1
αμ(∂), (6)

where φ−1
αμ(∂) is also a formal power series of the type (4). The existence of φ−1

μν implies
that there is a vector space isomorphism between the symmetric algebra generated by
xμ, μ = 1, 2, . . . , n, and the enveloping algebra of g. This isomorphism will be important
in defining the star-product discussed in section 5. With regard to the action of the rotation
algebra so(n) the realizations of the kappa-space can be divided into covariant [28] and
noncovariant [26]. Both types of realizations will be used in the construction of differential
forms in sections 3 and 4.

It is useful to introduce a unital associative algebra A over C generated by xμ, ∂μ

and ordinary one-forms dxμ, 1 � μ � n, satisfying the additional relations [dxμ, xν] =
[dxμ, ∂ν] = 0 and {dxμ, dxν} = 0 where {, } denotes the anticommutator. A basis for A
consists of the monomials

x
α1
1 · · · xαn

n ∂
β1
1 · · · ∂βn

n dxσ1 · · · dxσp
, (7)

where αi, βi ∈ N0 and 1 � σ1 < σ2 · · · < σp � n for p = 1, 2, . . . , n. We define a Z2-
gradation of A by A = A0 ⊕ A1 where A0 and A1 are spanned by the monomials (7) with p
even and odd, respectively. The algebra A is equipped with the graded commutator defined
on homogeneous elements by

[[u, v]] = uv − (−1)|u||v|vu, (8)
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where |u| denotes the degree of u, (|u| = 0 or |u| = 1). The commutator (8) makes A into a
Lie superalgebra, and it satisfies the graded Jacobi identity

(−1)|u||w|[[u, [[v,w]]]] + (−1)|v||u|[[v, [[w, u]]]] + (−1)|w||v|[[w, [[u, v]]]] = 0. (9)

Recall that in the ordinary Euclidean space the exterior derivative is given by d = ∑
α dxα∂α .

It is a nilpotent operator, d2 = 0, satisfying the commutation relation [d, xμ] = dxμ. Our
goal is to construct smooth deformations of d and dxμ, denoted by d̂ and ξμ, μ = 1, 2, . . . , n,
which preserve the basic relation

[d̂, x̂μ] = ξμ. (10)

Let us assume that d̂ and ξμ are represented by

ξμ =
∑

α

dxαhαμ(∂) and d̂ =
∑
α,β

dxα∂βkαβ(∂), (11)

where hμν and kμν are formal power series of the type (4). The boundary conditions
lima→0 hμν = δμν and lima→0 kμν = δμν ensure that in the smooth limit ξμ → dxμ and
d̂ → d as a → 0. As in the classical case, the deformed one-forms anticommute and the
exterior derivative is nilpotent. Indeed,

{ξμ, ξν} =
∑
α<β

{dxα, dxβ}(hαμhβν + hανhβμ) = 0, (12)

d̂2 =
∑
α<β

{dxα, dxβ}
∑
μ,ν

∂μ∂νkαμkβν = 0, (13)

since {dxα, dxβ} = 0. We assume that the matrix [hμν] is invertible so that we may express
dxμ in terms of ξμ. Using representation (11) one finds that the commutation relation (10) is
equivalent to a system of partial differential equations for the unknown functions hμν and kμν :

∑
ρ

⎛
⎝kαρ +

∑
β

∂kαβ

∂∂ρ

∂β

⎞
⎠φρμ = hαμ. (14)

This is an underdetermined system of n2 equations for 2n2 unknown functions. Taking the
commutator of d̂ with both sides of the commutation relations (1) and applying the Jacobi
identity to the commutator [d̂, [x̂μ, x̂ν]], we find that x̂μ and ξν satisfy the compatibility
condition

[x̂μ, ξν] − [x̂ν, ξμ] = i(aμξν − aνξμ). (15)

Hence, every solution of equation (14) must be compatible with the differential equation
implicit in (15). We note that equation (15) implies that since a �= 0, not all commutators
[x̂μ, ξν] can be simultaneously zero.

The condition (15) places constraints on the choice of kμν and hμν . For a given function kμν

satisfying lima→0 kμν = δμν , equation (14) uniquely determines hμν . The boundary conditions
imposed on φμν and kμν imply that lima→0 hαμ = δαμ automatically holds. Therefore, starting
with the exterior derivative d̂ one readily finds the one-forms ξμ satisfying equation (10).
However, the converse is not true since one cannot always find kμν for an arbitrary choice
of hμν . For example, if hμν = δμν then equation (11) implies that ξμ is the ordinary one-
form, ξμ = dxμ. In this case [x̂μ, ξν] = 0 for all μ, ν = 1, 2, . . . n, which contradicts the
compatibility condition (15).
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Let Ā denote the formal completion of A. We associate with the exterior derivative d̂ a
linear map or action d̂: Ā → Ā defined by

d̂ · u = [[d̂, u]]. (16)

It follows from equation (10) that d̂ · x̂μ = ξμ, hence the action of d̂ on the coordinate x̂μ

yields the one-form ξμ. The action of d̂ on the product of homogeneous elements u, v,∈ Ā
satisfies the graded Leibniz rule

d̂ · (uv) = (d̂ · u)v + (−1)|u|u(d̂ · v). (17)

For zero-forms f̂ = f̂ (x̂) and ĝ = ĝ(x̂) this reduces to the undeformed Leibniz rule

d̂ · (f̂ ĝ) = (d̂ · f̂ )ĝ + f̂ (d̂ · ĝ). (18)

It turns out that it is quite natural to consider the following canonical representation of d̂ and
ξμ:

Type I

d̂ =
∑

α

dxα∂α, ξμ =
∑

α

dxαφαμ(∂), (19)

Type II

d̂ =
∑

α

ξα∂α, ξμ =
∑

α

dxαhαμ(∂). (20)

The first type is obtained by choosing kμν = δμν , in which case equation (14) yields hμν = φμν .
This provides the simplest possible realization of the one-form ξμ. The second type is obtained
by demanding that kμν = hμν . Then the functions hμν satisfy the system of partial differential
equations

∑
ρ

⎛
⎝hαρ +

∑
β

∂hαβ

∂∂ρ

∂β

⎞
⎠ φρμ = hαμ (21)

subject to the boundary conditions lima→0 hμν = δμν . In this case both the exterior derivative
d̂ and one-forms ξμ depend in a very nontrivial manner on the given φ-realization. In the
following sections, we shall analyze d̂ and ξμ in covariant and noncovariant realizations
found in [26, 28]. Note that the generators x̂μ, ∂μ, ξμ, 1 � μ � n, form an associative
superalgebra which inherits the grading from the superalgebra A. The subalgebra generated
by x̂μ, ∂μ, 1 � μ � n is the deformed Heisenberg algebra (5).

So far we have defined the exterior derivative d̂ and one-forms ξμ such that d̂ · x̂μ = ξμ.
We would like to extend the above construction to higher order forms so that the action of d̂ on
k-forms yields (k + 1)-forms. First, we need to define what is meant by a k-form for k � 1. A
k-form is a finite linear combination of monomials in x̂1, x̂2, . . . , x̂n and ξ1, ξ2, . . . , ξn such that
there are precisely k one-forms ξμ in each monomial. The one-forms ξμ may be placed in any
order in a given monomial. For example, both ω̂1 = x̂μx̂νξρ and η̂1 = x̂μξρx̂ν are one-forms,
albeit different. Let �̂k denote the space of k-forms and let �̂ = ⊕

k�0 �̂k . The multiplication

in �̂ is simply given by juxtaposition of the elements. This defines a grading on �̂ since
�̂k�̂l ⊆ �̂k+l . We note that the product of differential forms is not graded commutative in
general,

ω̂kη̂l �= (−1)kl η̂l ω̂k. (22)

The product is graded commutative only for constant forms ω̂k = ξμ1ξμ2 · · · ξμk
since ξμi

and
ξμj

anticommute.

5
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Next we show that the exterior derivative d̂ maps �̂k into �̂k+1 for k � 0. First, using the
Leibniz rule (17) it is easily seen that

d̂ · f̂ (x̂) ∈ �̂1 for all f̂ (x̂) ∈ �̂0. (23)

Furthermore, using equation (11) we find

d̂ · ξμ = [[d̂, ξμ]] = d̂ξμ + ξμd̂ = 0 (24)

since {dxμ, dxν} = 0. By induction on k one can show that

d̂ · (ξμ1ξμ2 · · · ξμk
) = 0 for all k � 1. (25)

Relations (23) and (25) together with the Leibniz rule (17) imply that d̂ maps k-forms to
(k + 1)-forms. For example,

d̂ · (x̂μx̂νξλ) = d̂ · (x̂μx̂ν)ξλ = ξμx̂νξλ + x̂μξνξλ. (26)

The exterior derivative satisfies the graded Leibniz rule

d̂ · (ω̂kη̂l) = (d̂ · ω̂k)η̂l + (−1)kω̂k(d̂ · η̂l). (27)

Hence, the algebra �̂ together with the linear map d̂: �̂k → �̂k+1 is a differential algebra.
Our approach is essentially the same as the construction of the differential algebra of forms
discussed in [37]. In our case the algebra of zero-forms has the additional structure of the
universal enveloping algebra satisfying relations (1). We note that in general one cannot
rewrite a given k-form such that ξμ1 , ξμ2 , . . . , ξμk

are placed to the far right. This is possible
only in special realizations in which the commutator [ξμ, x̂ν] closes in the space of one-forms
ξμ alone.

3. Covariant realizations

In this section, we shall investigate the differential algebra of forms in covariant realizations
of the kappa-deformed space introduced in [28]. These realizations are covariant under the
action of the rotation aglebra so(n). Of particular interest is a class of simple realizations
obtained for the following choice of φμν in the representation (3):

Left realization:

φμν = (1 − A)δμν, (28)

Right realization:

φμν = δμν + iaν∂μ, (29)

Natural realization:

φμν(∂) = (−A +
√

1 − B)δμν + iaμ∂ν, (30)

Symmetric realization:

φμν = A

eA − 1
δμν + iaν∂μ

eA − A − 1

(eA − 1)A
. (31)

Here A and B are commuting operators defined by A = ia∂ and B = a2∂2 where we use the
convention a∂ = ∑

α aα∂α, ∂2 = ∑
α ∂2

α , etc. The symmetric realization corresponds to the
Weyl symmetric ordering of the monomials in x̂μ. We remark that for a general Lie algebra
type NC space there is a universal formula for φμν in Weyl symmetric ordering given in [48]

6
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as follows. Suppose x̂1, x̂2, . . . , x̂n are generators of a Lie algebra with structure constants
θμνα:

[x̂μ, x̂ν] = i
∑

α

θμναx̂α. (32)

Let M = [Mμν] denote the n × n matrix of differential operators with elements

Mμν = i
∑

α

θανμ∂α. (33)

Then the Weyl symmetric realization of the Lie algebra (32) is given by

φμν(∂) = p(M)μν where p(M) = M

eM − 1
(34)

is the generating function for the Bernoulli numbers (see also [49]). In principle, the exterior
derivative and one-forms may be constructed using any of the above realizations. Here we
shall consider the left, right and natural realizations.

3.1. Covariant realizations of type I

Let us consider realizations of type I where the exterior derivative is undeformed, d̂ =∑
α dxα∂α , and one-forms are given by ξμ = ∑

α dxαφαμ(∂). We investigate the conditions
under which the commutator [ξμ, x̂ν] is closed in the space of one-forms ξμ. The closedness of
the commuatator is important when considering the extended star-product of (classical) forms
in section 5.

Using realization (3) we have

[ξμ, x̂ν] =
∑

α

∑
β

dxα

∂φαμ

∂∂β

φβν. (35)

The matrix [φμν] is invertible, hence we may express dxμ in terms of ξμ to obtain

[ξμ, x̂ν] =
∑

σ

Cμνσ (∂)ξσ , (36)

where

Cμνσ (∂) =
∑

α

∑
β

φ−1
σα

∂φαμ

∂∂β

φβν. (37)

Clearly, the commutator (36) is closed in the space of one-forms ξμ only if the coefficients
Cμνσ are constant. This condition is satisfied in the left and right realizations, as shown in the
following. In the left realization, we have

x̂μ = xμ(1 − A), ξμ = dxμ(1 − A), (38)

which yields

[ξμ, x̂ν] = −iaνξμ. (39)

Similarly, in the right realization we have

x̂μ = xμ + iaμ(x∂), ξμ = dxμ + iaμ(dx∂), (40)

which leads to

[ξμ, x̂ν] = iaμξν. (41)

On the other hand, in the natural and symmetric realizations the coefficients Cμνσ involve
partial derivatives so the commutators between ξμ and x̂ν are not closed.

7
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3.2. Covariant realizations of type II

Consider now realizations of type II where the exterior derivative and one-forms are given
by d̂ = ∑

α ξα∂α and ξμ = ∑
α dxαhαμ(∂), and hαμ is a solution to equation (21). In this

section, we shall construct d̂ and ξμ using the natural realization (30). The construction of NC
forms in type II realization was considered in [25], but not in a proper and complete way. Our
motivation for using the natural realization is to present a proper analysis of this problem.

Let us write equation (21) in a more compact form∑
ρ

∂�α

∂∂ρ

φρμ = hαμ, (42)

where �α(∂) = ∑
β hαβ(∂)∂β . The idea is to solve an auxiliary problem for �α and then

calculate hμν from equation (42). Multiplying equation (42) by ∂μ and summing we obtain
the following boundary value problem for �α:∑

ρ

∂�α

∂∂ρ

�ρ = �a, lim
a→0

�α = ∂α, (43)

where �ρ(∂) = ∑
μ φρμ(∂)∂μ. In the natural realization (30) we find

�ρ(∂) = ∂ρ(−A +
√

1 − B) + iaρ∂
2. (44)

Let us denote Z−1 = −A +
√

1 − B. This is the inverse shift operator introduced in [28]. The
index structure of �ρ and equation (43) suggest that we should look for �α in the form

�α(∂) = ∂αH1(A,B) + iaα∂2H2(A,B) (45)

for unknown functions H1 and H2. From equations (44) and (45) we obtain∑
ρ

∂�α

∂∂ρ

�ρ = ∂α

[(
H1 + A

∂H1

∂A
+ 2B

∂H1

∂B

)
Z−1 − B

∂H1

∂A
+ 2AB

∂H1

∂B

]

+ iaα∂2

[(
2H2 + A

∂H2

∂A
+ 2B

∂H2

∂B

)
Z−1 + H1 + 2AH2 − B

∂H2

∂A
+ 2AB

∂H2

∂B

]
.

(46)

Substituting the above result into equation (43) we find that H1 and H2 satisfy the following
system of differential equations:(

H1 + A
∂H1

∂A
+ 2B

∂H1

∂B

)
Z−1 − B

∂H1

∂A
+ 2AB

∂H1

∂B
= H1, (47)

(
2H2 + A

∂H2

∂A
+ 2B

∂H2

∂B

)
Z−1 − B

∂H2

∂A
+ 2AB

∂H2

∂B
+ 2AH2 + H1 = H2. (48)

Since �α(∂) → ∂a as a → 0,H1 and H2 are subject to the boundary conditions

lim
a→0

H1(A,B) = 1, lim
a→0

H2(A,B) finite. (49)

It is shown in appendix A that the above system has a unique solution

H1(A,B) = 2(1 − √
1 − B)

B(−A +
√

1 − B)
, (50)

H2(A,B) = −2(1 − A +
√

1 − B)

(
1 − √

1 − B

B

)2

. (51)

8
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Inserting the expressions for H1 and H2 into equation (45) we find

�α(∂) = ∂α

2(1 − √
1 − B)

B(−A +
√

1 − B)
− iaα∂22(1 − A +

√
1 − B)

(
1 − √

1 − B

B

)2

. (52)

Since the exterior derivative is given by d̂ = ∑
α ξa∂α where ξμ = ∑

α dxαhαμ(∂), d̂ can be
expressed in terms of �α as

d̂ =
∑

α

dxα�α(∂). (53)

Thus, we find from equation (52) that

d̂ = 2(1 − √
1 − B)

B(−A +
√

1 − B)
(∂dx) − 2(1 − A +

√
1 − B)

(
1 − √

1 − B

B

)2

i(adx)∂2. (54)

Keeping only the first-order terms in a ∈ R
n we obtain the approximation

d̂ = ∂dx + i(a∂)(∂dx) − i∂2(adx), (55)

where d = ∂dx is the undeformed exterior derivative.
Next we consider the one-form ξμ. Substituting equations (30) and (52) into equation (42)

we find after some manipulation that

hαμ(∂) = L1δαμ + iL2aα∂μ + iL3aμ∂a + a2L4∂α∂μ − ∂2L5aαaμ, (56)

where

L1 = 2(1 − √
1 − B)

B
, (57)

L2 = −2(−1 +
√

1 − B)
[
2(A2 + A − B)

√
1 − B + B − 2(A2 − 2AB + A)

]
B2(−A +

√
1 − B)

, (58)

L3 = 2(1 − √
1 − B)

B(−A +
√

1 − B)
, (59)

L4 = −2(B + 2
√

1 − B − 2)

B2(−A +
√

1 − B)
, (60)

L5 = 2(−A +
√

1 − B)(1 − √
1 − B)2

B2
. (61)

Therefore, in the natural realization of type II the one-form ξμ is given by

ξμ =
∑

α

hαμ(∂) dxα

= L1 dxμ + (iL2∂μ − ∂2L5aμ)(adx) + (iL3aμ + a2L4∂μ)(∂dx). (62)

Although the above realization of ξμ is rather complicated, the first-order approximation has
a particularly nice form

ξμ = dxμ +
∑

α

i(aμ∂α − aα∂μ) dxα. (63)

Let us now investigate the commutation relations for ξμ and x̂ν . The NC coordinates in the
natural realization (30) are given by

x̂μ = xμ(−A +
√

1 − B) + i(ax)∂μ. (64)

9
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The explicit form of the commutator [ξμ, x̂ν] is fairly complicated and a complete derivation
is given in appendix B. Here we only state that it can be expressed as

[ξμ, x̂ν] = ξμ

P (1)
ν

L1
+ ξν

P (2)
μ

L1
+ (iaξ)R(1)

μν + (∂ξ)R(2)
μν , (65)

where P (i)
μ and R(i)

μν are certain combinations of the functions L1, L2, . . . , L5 and their partial
derivatives. We note that the commutator (65) is not closed since the right-hand side involves
derivatives ∂μ. To gain an insight into the form of the commutator it is instructive to find a
first-order approximation in the parameter a. To first order in a the natural realization of x̂μ is
given by

x̂μ = xμ(1 − ia∂) + i(ax)∂μ. (66)

Using the approximations (63) and (66) we obtain

[ξμ, x̂ν] = i
∑

α

(aμδαν − aαδμν)ξα. (67)

As a special case suppose that the vector a ∈ R
n has only one non-zero component, aμ = aδμn

for μ = 1, 2, . . . , n. Then

[ξμ, x̂ν] = ia(δμnξν − δμνξn). (68)

The above result agrees to first order in a with the commutator [ξμ, x̂ν] for vector-like
transforming one-forms considered in [25]. We emphasize, however, that the exact expression
(65) does not agree with this commutator for higher orders in a.

4. Noncovariant realizations

In this section, we consider the exterior derivative and one-forms in noncovariant realizations
of the kappa-space introduced in [26]. We assume that the components of the deformation
vector a ∈ R

n are given by ak = 0 for k = 1, 2, . . . , n−1 and an = a. Then the commutation
relations (1) yield

[x̂k, x̂l] = 0, [x̂n, x̂k] = iax̂k, k, l = 1, 2, . . . , n − 1. (69)

We use the Latin alphabet for the indices 1, 2, . . . , n−1 and the Greek alphabet for the full set
1, 2, . . . , n. It was shown in [26] that the NC coordinates x̂μ have infinitely many realizations
of the form

x̂k = xkϕ(A), k = 1, 2, . . . , n − 1, (70)

x̂n = xn + ia
n−1∑
k=1

xk∂kγ (A), (71)

where

γ (A) = ϕ′(A)

ϕ(A)
+ 1, A = ia∂n. (72)

The realizations are parametrized by the function ϕ(A) satisfying the boundary conditions
lima→0 ϕ(A) = 1 and lima→0 ϕ′(A) finite, so that x̂μ → xμ as a → 0. The NC coordinates
x̂μ are covariant under the rotation algebra so(n − 1), but not generally under the full algebra
so(n).

10



J. Phys. A: Math. Theor. 42 (2009) 365204 S Meljanac and S Krešić-Jurić

The most general ansatz for the exterior derivative d̂ invariant under so(n − 1) is

d̂ =
n−1∑
k=1

dxk∂kN1(A,�) + dxn∂nN2(A,�) + ia dxn

n−1∑
k=1

∂2
k G(A,�), (73)

where � = (ia)2 ∑n−1
k=1 ∂2

k . The family of realizations (70) and (71) includes special
realizations corresponding to the left, right, symmetric left–right and symmetric Weyl
orderings for the enveloping algebra of the Lie algebra (69). These realizations are
parametrized by

ϕ(A) = e−A, ϕ(A) = 1, ϕ(A) = e−A/2 and ϕ(A) = A/(eA − 1), (74)

respectively. We remark that only the symmetric Weyl realization is covariant under the full
algebra so(n).

For a given parameter function ϕ and an arbitrary choice of N1, N2 and G one can find
the one-forms ξk satisfying [d̂, x̂μ] = ξμ. As in the case of the covariant realizations one can
express the commutator [ξμ, x̂ν] in terms of the one-forms ξμ and partial derivatives ∂μ, but
the general expressions are fairly complicated.

In the following, we will focus our attention to a subfamily of the noncovariant
realizations which lead to some interesting results. These realizations are parametrized by
ϕ(A) = e−cA, c ∈ R:

x̂k = xke
−cA, k = 1, 2, . . . , n − 1, (75)

x̂n = xn + ia(1 − c)

n−1∑
k=1

xk∂k. (76)

They include the left, right and symmetric left–right realizations for c = 1, c = 0 and c = 1/2,
respectively. Let us define the exterior derivative by

d̂ =
n−1∑
k=1

dxk∂k e(c−1)A + dxn∂n (77)

(N1 = e(c−1)A,N2 = 1,G = 0). Then the corresponding one-forms are given by

ξk = [d̂, x̂k] = dxk e−A, k = 1, 2, . . . , n − 1, (78)

ξn = [d̂, x̂n] = dxn. (79)

The algebra generated by x̂μ and ξμ satisfies the commutation relations

[ξk, x̂l] = 0, [ξk, x̂n] = −iaξk, (80)

[ξn, x̂l] = 0, [ξn, x̂n] = 0. (81)

This algebra satisfies the graded Jacobi relations (9). We note that relations (80) and (81)
correspond to the algebra found by Kim et al [50] where the commutators are defined in terms
of the star-product, except that in our work ξμ and ξν anticommute. In particular, for c = 0
the exterior derivative becomes

d̂ =
n−1∑
k=1

dxk∂ke
−A + dxn∂n =

n∑
α=1

ξα∂α, (82)

which is the type II realization of d̂ . In addition to the examples in section 3 the commutators
(80) and (81) also close in the space of one-forms ξμ alone. Moreover, the right realization
(c = 0) is an example of a type II realization with closed commutator.

The above construction can be extended to any parameter function ϕ. It can be shown that
for a given ϕ one can find N1, N2 and G such that d̂ = ∑

α ξα∂α and [d̂, x̂μ] = ξμ. However,
this may be very complicated as already seen in the natural realization in section 3.
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5. Extended star-product

Regarding functions as zero-forms we want to extend the star-product to differential forms
of arbitrary degree. The star-product of differential forms in the context of deformation
quantization has been investigated recently in [51]. The construction of the star-product
presented here is valid for a general Lie algebra type noncommutative space. We recall that
the realization of NC coordinates x̂μ in terms of xμ and ∂μ is given by equation (3). Also, since
the matrix [φμν] is invertible the commutative coordinates xμ admit realization in terms of x̂μ

and ∂μ via equation (6). The duality between x̂μ and xμ induces a vector space isomorphism
�φ :U(g) → S between the enveloping algebra U(g) of the Lie algebra (1) and the symmetric
algebra S generated by xμ, μ = 1, 2, . . . , n. The isomorphism �φ depends on the realization
φ and is given as follows. Let 1 denote the unit in S (S is isomorphic to the Fock space built
on the vacuum vector |0〉 ≡ 1). Then xμ and ∂μ act on f ∈ S in a natural way by xμ ·f = xμf

and ∂μ · f = ∂f

∂xμ
. In particular,

xμ · 1 = xμ, ∂μ · 1 = 0. (83)

For a monomial f̂ (x̂) ∈ U(g) we define

�φ(f̂ (x̂)) = f̂ (x̂) · 1 ≡ f (x), (84)

and extend �φ linearly to U(g). The map �φ is evaluated at f̂ (x̂) by using the realization (3)
and action (83). For example,

�φ(x̂μ) =
∑

α

(xαφαμ(∂)) · 1 = xμ (85)

since φαμ(∂) = δαμ + o(∂). Similarly, for monomials of order 2 we have

�φ(x̂μx̂ν) = xμxν +
∑

α

xα

∂φαμ

∂∂ν

· 1, (86)

where ∂φαμ

∂∂ν
· 1 is a first-order coefficient in the Taylor expansion of φαμ(∂). In general,

�φ

(
x̂μ1 x̂μ2 · · · x̂μm

)
is a polynomial in the variables xμ1 , xμ2 , . . . , xμm

whose coefficients are
given by the Taylor expansion of φμν . The computation of �φ

(
x̂μ1 x̂μ2 · · · x̂μm

)
can be done

using a recursive formula. Suppose that

�φ

(
x̂μ2 x̂μ3 · · · x̂μm

) = p
(
xμ2 , xμ3 , . . . , xμm

)
. (87)

Then

�φ

(
x̂μ1 x̂μ2 · · · x̂μm

) = xμ1p
(
xμ2 , xμ3 , . . . , xμm

)
+

∑
α

xα

[
φαμ1 , p

(
xμ2 , xμ3 , . . . , xμm

)] · 1. (88)

The commutator in the above expression is calculated according to

[φαμ, x1x2 · · · xk] = [φαμ, x1]x2 · · · xk + x1[φαμ, x2] · · · xk + · · · + x1 · · · xk−1[φαμ, xk]. (89)

The inverse map �−1
φ is defined analogously. Let 1̂ be the unit in U(g). Define the action of

x̂μ on a monomial f̂ (x̂) ∈ U(g) by x̂μ · f̂ (x̂) = x̂μf̂ (x̂). The action of ∂μ on f̂ (x̂) is defined
by ∂μ · 1̂ = 0 and ∂μ · f̂ (x̂) = (∂μf̂ (x̂)) · 1̂ where ∂μf̂ (x̂) is expressed using the commutation
relations [∂μ, x̂ν] = φμν(∂). For the lowest order vector we have

x̂μ · 1̂ = x̂μ, ∂μ · 1̂ = 0. (90)

Then �−1
φ is given by

�−1
φ (f (x)) = f (x) · 1̂ ≡ f̂ (x̂) (91)
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where f (x) · 1̂ is calculated using the realization (6) and relations (90). For example,

�−1
φ (xμ) =

∑
α

x̂αφ−1
αμ(∂) · 1̂ = x̂μ (92)

since φ−1
αμ(∂) = δαμ + o(∂), and for monomials of order 2 we have

�−1
φ (xμxν) = x̂μx̂ν +

∑
α

x̂α

∂φ−1
αμ

∂∂ν

· 1̂. (93)

One can show that the right-hand side of equation (93) is invariant under the transposition
of indices μ ↔ ν, hence �−1

φ (xμxν) is well defined. Clearly, �φ and �−1
φ can be readily

extended to U(g) and S, the formal completions of U(g) and S. The star-product of f, g ∈ S
is defined by

(f �φ g)(x) = (f̂ (x̂)ĝ(x̂)) · 1, (94)

where f̂ (x̂) = �−1
φ (f (x)) and ĝ(x̂) = �−1

φ (g(x)). In the limit as the deformation parameter
a → 0 the star-product reduces to ordinary product of functions (cf equation (4)). The
star-product on the kappa-deformed space was discussed in [26, 28, 29]; see also [52].

Equation (94) defines the star-product of zero-forms. Following the ideas outlined above
we want to extend the star-product to differential forms of arbitrary degree. Our strategy is to
associate with ωk a noncommutative form ω̂k such that ω̂k ·1 = ωk and define the star-product
by

ωk �φ ηl = (ω̂kη̂l) · 1. (95)

It turns out that the star-product (95) is well defined provided the commutator [ξμ, x̂ν] is closed
in the space of one-forms ξμ alone. It depends only on the realizations of the coordinates x̂μ,
hence we also denote it by �φ .

First let us consider the star-product of constant forms. Recall that the noncommutative
one-form ξμ is defined by ξμ = ∑

α dxαhαμ(∂) where hαμ satisfies equation (14). The matrix
[hμν] is invertible, hence there is a dual relation dxμ = ∑

α ξαh−1
αμ(∂). Since hαμ(∂) is a power

series of the type (4), and dxμ and ∂ν commute, we have(
ξμ1ξμ2 · · · ξμk

) · 1 = dxμ1 dxμ2 · · · dxμk
. (96)

Therefore, to a k-form ωk = dxμ1 dxμ2 · · · dxμk
we associate a unique noncommutative form

ω̂k = ξμ1ξμ2 · · · ξμk
satisfying ω̂k · 1 = ωk . The star-product of ωk = dxμ1 dxμ2 · · · dxμk

and
ηl = dxν1 dxν2 · · · dxνl

is trivially given by

ωk �φ ηl = (
ξμ1ξμ2 · · · ξμk

ξν1ξν2 · · · ξνl

) · 1. (97)

In view of equation (96) the star-product of constant forms is undeformed,

ωk �φ ηl = ωkηl, (98)

and graded commutative,

ωk �φ ηl = (−1)klηl �φ ωk. (99)

Now suppose that ωk is a general k-form ωk = p(x) dxσ1 dxσ2 · · · dxσk
where p(x) is a

monomial in xμ. Then the associated noncommutative form is given by ω̂k = ωk · 1̂ where we
define ξμ · 1̂ = ξμ. This yields

ω̂k = �−1
φ (p(x))ξσ1ξσ2 . . . ξσk

. (100)

Indeed, let us denote p̂(x̂) = �−1
φ (p(x)). Using commutativity of dxμ with xμ and ∂μ we

obtain

13
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ω̂k =
∑

ρ1,...,ρk

dxρ1 dxρ2 · · · dxρk
p̂(x̂)hρ1σ1hρ2σ2 · · · hρkσk

(101)

= dxσ1 dxσ2 · · · dxσk
(p̂(x̂) + o(∂)). (102)

Thus,

ω̂k · 1 = p(x) dxσ1 dxσ2 . . . dxσk
= ωk (103)

since p̂(x̂) · 1 = p(x). We note that ω̂k given by equation (100) is a unique noncommutative
form (up to reordering of x̂μ in p̂(x̂) using the commutation relations (1)) with the property
ω̂k · 1 = ωk in which the NC coordinates are naturally ordered to the left of ξμ. If
ωk = p(x) dxμ1 dxμ2 · · · dxμk

and ηl = q(x) dxν1 dxν2 · · · dxνl
, then equations (95) and (100)

yield

ωk �φ ηl = (
p̂(x̂)ξμ1 · · · ξμk

q̂(x̂)ξν1 · · · ξνl

) · 1, (104)

where p̂(x̂) = �−1
φ (p(x)) and q̂(x̂) = �−1

φ (q(x)). The star-product (104) is not graded
commutative since x̂μ and ξμ do not commute. The product is well defined provided the
commutators [ξμ, x̂ν] are closed in the space of one-forms ξμ. In this case one can use the
commutation relations between ξμ and x̂ν to write (104) in the natural order with x̂μ to the left
of ξμ and evaluate the star-product using

(
p̂(x̂)ξμ1 · · · ξμk

) ·1 = p(x) dxμ1 · · · dxμk
. In view of

earlier considerations, the extended star-product can be defined in the covariant left, right and
noncovariant realizations discussed in sections 3 and 4. We note that the extended star-product
is associative since this property is inherited from associativity of operator multiplication in
the superalgebra A.

Finally, let us consider the exterior derivative acting on the star-product of forms. In the
realization of type I the exterior derivative is undeformed, d̂ = d ≡ ∑

α dxα∂α . Then one can
show that

dω = (d̂ω̂) · 1, (105)

where ω̂ · 1 = ω. Using the star-product (95) and Leibniz rule (17) one finds

d(ω �φ η) = dω �φ η + (−1)|ω|ω �φ dη. (106)

Hence, in type I realization the Leibniz rule for the extended star-product is undeformed.
It would be interesting to investigate the action of the induced exterior derivative on the
star-product of forms in other realizations when d̂ is given by a general expression (11).

6. Concluding remarks

In this paper, we have investigated the differential algebra of forms on the kappa-deformed
space. Our construction of the exterior derivative d̂ and one-forms ξμ is based on the
realizations of NC coordinates x̂μ in terms of formal power series in the Weyl algebra. We
have shown that for each realization of x̂μ there is an infinite family of the exterior derivatives
d̂ which uniquely determine the one-forms ξμ. The exterior derivative is a nilpotent operator
and it satisfies the undeformed Leibniz rule. The NC coordinates x̂μ, derivatives ∂μ and one-
forms ξμ generate a Z2-graded algebra. The subalgebra generated by x̂μ and ∂μ is a deformed
Heisenberg algebra. The algebra generated by x̂μ and ξμ is generally not closed under the
commutator bracket since [ξμ, x̂ν] may involve an infinite series in ∂μ. Only in special
cases of the covariant left, right and noncovariant realizations the algebra is closed under the
commutator bracket. Furthermore, the commutator [ξμ, x̂ν] is nonzero in all realizations. For
higher order forms we have shown that the exterior derivative satisfies the graded Leibniz rule,
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and the graded Jacobi identity also holds. However, the graded commutativity law holds only
for x̂μ-independent forms. In the limit when the deformation parameter a → 0 our theory
reduces to classical results.

The exterior derivative and one-forms have been analyzed in both covariant and
noncovariant realizations. In the covariant case we have found explicit representations of d̂

and ξμ in the left, right and natural realizations. We have also found a closed form expression
for the commutator [ξμ, x̂ν] in these realizations, and derived an approximation to first order
in a in the natural realization. In the noncovariant case we have constructed a one-parameter
family of realizations of d̂ and ξμ. For this family of realizations the commutator [ξμ, x̂ν] is
always closed in the space of one-forms ξμ.

We have also extended the star-product from zero-forms to differential forms of arbitrary
degree. The star-product can be defined for realizations in which [ξμ, x̂ν] is closed in the
space of one-forms ξμ. It depends only on the realizations of both the NC coordinates x̂μ.
For differential forms with constant coefficients the star-product is undeformed and graded
commutative, but for arbitrary forms this is no longer true. It was shown that the exterior
derivative acting on the extended star-product satisfies the undeformed Leibniz rule in type I
realization. It would be interesting to investigate possible relations between our approach to
the star-product of differential forms and the recent work presented in [51].

Finally, the notion of the twist operator is very important in the construction of the star-
product from both the mathematical [53, 54] and physical [55–59] points of view. The twist
operator for zero-forms on the kappa-deformed space was constructed in [30] and [59], and
was also considered in [27]. However, it remains an open problem to see if there exists a twist
operator that leads to the star-product of differential forms defined in this work.
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Appendix A

In this appendix, we find the solution of the system of equations (47) and (48). Let us write
equation (47) in equivalent forms as

(AZ−1 − B)
∂H1

∂A
+ 2B

√
1 − B

∂H1

∂B
+ (Z−1 − 1)H1 = 0. (A.1)

We assume that H1 can be factored as H1(A,B) = ZF1(B) which leads to the following
differential equation for F1,

2B
√

1 − BF ′
1(B) +

(√
1 − B − 1

)
F1(B) = 0. (A.2)

The boundary condition for H1 implies that lima→0 F1(B) = 1. Now the solution to equa-
tion (A.2) is readily found to be

F1(B) = 2(1 − √
1 − B)

B
, (A.3)

hence

H1(A,B) = 2(1 − √
1 − B)

B(−A +
√

1 − B)
. (A.4)
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Next, let us consider equation (48) which we write equivalently as

(AZ−1 − B)
∂H2

∂A
+ 2B

√
1 − B

∂H2

∂B
+ (2

√
1 − B − 1)H2 = −H1. (A.5)

We apply a similar method of ‘separation of variables’ assuming that H2(A,B) = ZF2(B) +
F3(B). Inserting the ansatz for H1 and H2 into equation (A.5), and grouping the terms
depending only on B on the right-hand side, we obtain

AF2(B) + Z−1(2B
√

1 − BF ′
3(B) + (2

√
1 − B − 1)F3(B))

= −2B
√

1 − BF ′
2(B) − (2

√
1 − B − 1)F2(B) − F1(B). (A.6)

Let us define the function

G(B) = 2B
√

1 − BF ′
3(B) +

(
2
√

1 − B − 1
)
F3(B). (A.7)

Then the variables in equation (A.6) can be separated as

A(F2(B) − G(B)) = −2B
√

1 − BF ′
2(B) − (2

√
1 − B − 1)F2(B) − F1(B) − √

1 − BG(B).

(A.8)

We conclude that both sides of the equation must be zero which implies that F2 and F3 satisfy
the following system of differential equations:

2B
√

1 − BF ′
2(B) + (3

√
1 − B − 1)F2(B) = −F1(B), (A.9)

2B
√

1 − BF ′
3(B) + (2

√
1 − B − 1)F3(B) = F2(B). (A.10)

Using the boundary condition for H2 we find that in the limit a → 0 both F2(B) and F3(B)

must be finite. Taking this into account, integration of the system (A.9) and (A.10) yields

F2(B) = F3(B) = −2

(
1 − √

1 − B

B

)2

. (A.11)

Therefore,

H2(A,B) = −2(1 − A +
√

1 − B)

(
1 − √

1 − B

B

)2

. (A.12)

Appendix B

In this appendix we give a brief derivation of the result (65). We shall do this in two steps.
First we calculate the commutator [ξμ, x̂ν] where ξμ = ∑

α dxαhαμ(∂) and x̂ν is given in the
natural realization (30). We have

[ξμ, x̂ν] = Z−1
∑

α

[hαμ, xν]dxα + ∂ν

∑
α

[hαμ, iax] dxα. (B.1)

Expressing hαμ by equation (56) and making use of

∂f (A,B)

∂∂μ

= i
∂f

∂A
aμ + 2a2 ∂f

∂B
∂μ, (B.2)

after some manipulation we find∑
α

[hαμ, xν]dxα =
(

i
∂L1

∂A
aν + 2a2 ∂L1

∂B
∂ν

)
dxμ

+ (iL3aμ + a2L4∂μ) dxν + iSμν(a dx) + Tμν(∂ dx), (B.3)
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where we have defined

Sμν = L2δμν + 2

(
B

∂L5

∂B
+ L5

)
iaμ∂ν +

∂L2

∂A
iaν∂μ + 2a2 ∂L2

∂B
∂μ∂ν − ∂2 ∂L5

∂A
aμaν, (B.4)

Tμν = a2L4δμν + 2a2 ∂L3

∂B
iaμ∂ν + a2 ∂L4

∂A
iaν∂μ + 2a4 ∂L4

∂B
∂μ∂ν − ∂L3

∂A
aμaν. (B.5)

A similar computation yields∑
α

[hαμ, iax] dxα = a2E1 dxμ + (iE2aμ + a2E3∂μ)(ia dx) + a2(iE4aμ + a2E5∂μ)(∂ dx)

(B.6)

where the functions Ei are defined by

E1 = 2A
∂L1

∂B
− ∂L1

∂A
, (B.7)

E2 = L2 + L3 + 2AL5 + 2AB
∂L5

∂B
− B

∂L5

∂A
, (B.8)

E3 = L4 + 2A
∂L2

∂B
− ∂L2

∂A
, (B.9)

E4 = L4 + 2A
∂L3

∂B
− ∂L3

∂A
, (B.10)

E5 = 2A
∂L4

∂B
− ∂L4

∂A
. (B.11)

Combining equations (B.3) and (B.6) we obtain

[ξμ, x̂ν] = dxμP (1)
ν + dxνP

(2)
μ (∂) + (ia dx)Q(1)

μν + (∂dx)Q(2)
μν . (B.12)

where the functions P (i)
μ and Q(i)

μν are given by

P (1)
ν = Z−1 ∂L1

∂A
iaν + a2

(
2Z−1 ∂L1

∂B
+ E1

)
∂ν, (B.13)

P (2)
μ = Z−1L3 iaμ + a2Z−1L4∂μ, (B.14)

Q(1)
μν = Z−1Sμν + E2 iaμ∂ν + a2E3∂μ∂ν, (B.15)

Q(2)
μν = Z−1Tμν + a2E4 iaμ∂ν + a4E5∂μ∂ν. (B.16)

In the second step, we wish to express the commutator (B.12) in terms of the one-forms ξμ

and derivatives ∂μ. In order to replace dxμ by ξμ we write dxμ = ∑
α h−1

αμ(∂)ξμ where h−1
αμ

is the inverse of the matrix hαμ. The inverse matrix should have the same index structure as
hαμ, hence we look for h−1

αμ in the form

h−1
αμ(∂) = G1δαμ + iG2aα∂μ + iG3aμ∂α + a2G4∂α∂μ − ∂2G5aαaμ. (B.17)

The condition
∑

α hαβh−1
βμ = δαμ implies that the functions Gk satisfy the following system

of equations:

G1 = L−1
1 , (B.18)

−(L1 + AL2 − BL5)G2 − B(L2 + AL5)G4 = L2L
−1
1 , (B.19)
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(L3 − AL4)G2 − (L1 + AL3 + BL4)G4 = L4L
−1
1 , (B.20)

−(L1 + AL3 + BL4)G3 + B(L3 − AL4)G5 = L3L
−1
1 , (B.21)

−(L2 + AL5)G3 − (L1 + AL2 − BL5)G5 = L5L
−1
1 . (B.22)

The solution of the system is given by

G2 = 1

M
[−(L1 + AL3 + BL4)L2 + B(L2 + AL5)L4], (B.23)

G3 = − 1

M
[(L1 + AL2 − BL5)L3 + B(L3 − AL4)L5], (B.24)

G4 = − 1

M
[(L3 − AL4)L2 + (L1 + AL2 − BL5)L4], (B.25)

G5 = 1

M
[(L2 + AL5)L3 − (L1 + AL3 + BL4)L5], (B.26)

where

M = L1[(L1 + AL2 − BL5)(L1 + AL3 + BL4) + B(L2 + AL5)(L3 − AL4)]. (B.27)

Now, with the functions Gk defined as above, we have

dxμ =
∑

α

h−1
αμ(∂)ξα = G1ξμ + (∂2G5 iaμ + G2∂μ)(iaξ) + (G3iaμ + a2G4∂μ)(∂ξ). (B.28)

Using equation (B.28) to eliminate dxμ from the commutator (B.12) we obtain

[ξμ, x̂ν] = ξμ

P (2)
ν

L1
+ ξν

P (2)
μ

L1
+ (iaξ)R(1)

μν + (∂ξ)R(2)
μν , (B.29)

where R(1)
μν and R(2)

μν are defined by

R(1)
μν = ∂2G5

(
P (1)

ν iaμ + P (2)
μ iaν

)
+ G2

(
P (1)

ν ∂μ + P (2)
μ ∂ν

)
+ (G1 + AG2 − BG5)Q

(1)
μν + ∂2(G2 + AG5)Q

(2)
μν , (B.30)

R(2)
μν = G3

(
P (1)

ν iaμ + P (2)
μ iaν

)
+ a2G4

(
P (1)

ν ∂μ + P (2)
μ ∂ν

)
+ a2(AG4 − G3)Q

(1)
μν + (G1 + AG3 + BG4)Q

(2)
μν . (B.31)

Tracing back the computations we can express the commutator (B.29) explicitly in terms of
L1, . . . , L5 and their partial derivatives, but the expressions are cumbersome and not useful
for practical calculations.
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[17] Kosiński P, Lukierski J, Maślanka P and Sitarz A 2003 Generalised κ-deformations and deformed relativistic

scalar fields on noncommutative Minkovski space arXiv:hep-th/0307038
[18] Amelino-Camelia G 2001 Testable scenario for relativity with minimum-length Phys. Lett. 510 255

(arXiv:hep-th/0012238)
Amelino-Camelia G 2002 Relativity in space-times with short-distance structure governed by an observer-

independent (Planckian) length scale Int. J. Mod. Phys. D 11 35 (arXiv:gr-qc/0012051)
Bruno N R, Amelino-Camelia G and Kowalski-Glikman J 2001 Deformed boost transformations that saturate

at the Planck scale Phys. Lett. B 522 133 (arXiv:hep-th/0107039)
[19] Kowalski-Glikman J and Nowak S 2002 Double special relativity theories as different bases of kappa-Poincaré
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Meljanac S, Mileković M and Pallua S 1994 Unified view of deformed single-mode oscillator algebras Phys.
Lett. B 328 55 (arXiv:hep-th/9404039)
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[43] Meljanac S, Mileković M and Stojić M 2002 Permutation invariant algebras, a Fock space realization and the

Calogero model Eur. Phys. J. C 24 331 (arXiv:math-ph/0201061)
[44] Jonke L and Meljanac S 2002 Bosonic realization of algebras in the Calogero model Phys. Lett. B 526 149

(arXiv:hep-th/0106135)
[45] Nair V P and Polychronakos A P 2001 Quantum mechanics on the noncommutative plane and sphere Phys.

Lett. B 505 267 (arXiv:hep-th/0011172)
[46] Jonke L and Meljanac S 2003 Representations of noncommutative quantum mechanics and symmerties Eur.

Phys. J. C 29 433 (arXiv:hep-th/0210042)
Dadić I, Jonke L and Meljanac S 2005 Harmonic oscillator on noncommutative spaces Acta Phys. Slovaca 55

149 (arXiv:hep-th/0301066)
[47] Kempf A, Mangano G and Mann R B 1995 Hilbert space representation of the minimal length uncertainty

relation Phys. Rev. D 52 1108 (arXiv:hep-th/9412167)
Chang L N, Minic D, Okamura N and Takeuchi T 2002 The effect of the minimal length uncertainty relation on

the density of states and the cosmological constant problem Phys. Rev. D 65 125027 (arXiv:hep-th/0201017)

20

http://dx.doi.org/10.1016/j.physletb.2008.03.058
http://www.arxiv.org/abs/hep-th/0611175v2
http://dx.doi.org/10.1140/epjc/s10052-007-0285-8
http://www.arxiv.org/abs/hep-th/0702215
http://dx.doi.org/10.1140/epjc/s10052-007-0450-0
http://www.arxiv.org/abs/0705.2471
http://dx.doi.org/10.1088/1751-8113/41/23/235203
http://dx.doi.org/10.1088/1126-6708/2005/12/029
http://www.arxiv.org/abs/hep-th/0409128
http://www.arxiv.org/abs/hep-th/0407227
http://dx.doi.org/10.1088/1126-6708/2007/08/012
http://www.arxiv.org/abs/0705.3780 [hep-th]
http://www.arxiv.org/abs/hep-th/0607221
http://dx.doi.org/10.1103/PhysRevD.75.081701
http://www.arxiv.org/abs/hep-th/0701268
http://dx.doi.org/10.1016/j.physletb.2007.02.056
http://www.arxiv.org/abs/hep-th/0612170
http://www.arxiv.org/abs/hep-th/9706031v1
http://dx.doi.org/10.1142/S0217751X0502238X
http://www.arxiv.org/abs/hep-th/0410058v3
http://www.arxiv.org/abs/hep-th/0712.0350v1
http://www.arxiv.org/abs/hep-th/9701078
http://www.arxiv.org/abs/hep-th/0408080
http://dx.doi.org/10.1016/0370-2693(93)90198-Q
http://dx.doi.org/10.1016/0370-2693(94)90427-8
http://www.arxiv.org/abs/hep-th/9404039
http://dx.doi.org/10.1142/S0217751X9600064X
http://dx.doi.org/10.1088/0305-4470/27/14/004
http://dx.doi.org/10.1142/S0217732394003117
http://www.arxiv.org/abs/hep-th/9409180
http://dx.doi.org/10.1088/0305-4470/36/23/305
http://www.arxiv.org/abs/math-ph/0304038
http://dx.doi.org/10.1007/s100520000457
http://www.arxiv.org/abs/hep-th/0009099
http://dx.doi.org/10.1016/S0370-2693(02)01481-8
http://www.arxiv.org/abs/hep-th/0107053
http://dx.doi.org/10.1007/s100520200914
http://www.arxiv.org/abs/math-ph/0201061
http://dx.doi.org/10.1016/S0370-2693(01)01464-2
http://www.arxiv.org/abs/hep-th/0106135
http://dx.doi.org/10.1016/S0370-2693(01)00339-2
http://www.arxiv.org/abs/hep-th/0011172
http://dx.doi.org/10.1140/epjc/s2003-01205-6
http://www.arxiv.org/abs/hep-th/0210042
http://www.arxiv.org/abs/hep-th/0301066
http://dx.doi.org/10.1103/PhysRevD.52.1108
http://www.arxiv.org/abs/hep-th/9412167
http://dx.doi.org/10.1103/PhysRevD.65.125027
http://www.arxiv.org/abs/hep-th/0201017


J. Phys. A: Math. Theor. 42 (2009) 365204 S Meljanac and S Krešić-Jurić
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